

#### **MEMS SCAN PROJECTION**

P/N: DSH-2919-S000



# Single Axis MEMS Scanning Mirror With Large Reflective Mirror

This is a single axis MEMS scanning mirror (MEMS scanner) providing high performance light beam scanning in a single silicon chip.



#### **Features**

- Large millimeter-size mirror capable of projecting & collecting reflected light beam
- Au or Al coated mirror to maximize optical reflectivity for selected wave length range
- Single-crystal silicon structure operated without mechanical wear
- Monolithic mirror & micro-actuator driven by electrostatic principle
- Low power consumption & ultra low noise
- Resonant operation for low scan jitter
- · Compact and lightweight
- Standard PLCC (plastic leadless chip carrier) package
- Shock tolerant
- · ROHS compliant

#### **Applications**

- Bar code scanning
- · Laser area sensing
- LADAR (laser detection and range sensing)
- Non contact measurement and sensing
- Applications requiring line scan of laser beam

| Specifications (Preliminary)    |                                       |
|---------------------------------|---------------------------------------|
| Mirror plate size               | 2.5x3.0 mm <sup>2</sup> / rectangular |
|                                 |                                       |
| Mirror reflectivity             | > 90% (λ = 650nm @ 45°)               |
|                                 |                                       |
| Mirror resonant frequency       | $500Hz\pm10\%$                        |
|                                 |                                       |
| Mirror metallization            | Au or Al                              |
|                                 |                                       |
| Power consumption               | < 20 mW                               |
|                                 |                                       |
| Typical drive voltage           | 50 VAC p-p unipolar                   |
|                                 |                                       |
| Maximum drive voltage           | 60 VAC p-p unipolar                   |
|                                 | ( <b>0.5</b> 0 ( ) ) )                |
| Typical scan angle              | +/-25° (optical)                      |
| Marian and a second             | . / 200 /+:1)                         |
| Maximum scan angle              | +/-28° (optical)                      |
| Scan trajectory                 | Sinusoidal                            |
| scan trajectory                 | Siliusolaat                           |
| Drive principle                 | Electrostatic                         |
| brive principle                 | Licetrostatie                         |
| Operating temperature           | 0°~60°C                               |
| operating temperature           |                                       |
| Operating humidity              | 10%~85%                               |
| , , ,                           |                                       |
| Package footprint               | 10x10 mm <sup>2</sup>                 |
|                                 |                                       |
| Package                         | PLCC48                                |
| 1 Mirror is resenantly enerated |                                       |

- 1. Mirror is resonantly operated
- 2. Scan angle adjustable by controlling amplitude or duty ratio of drive voltage signal
- 3. Exceeding maximum scan angle or maximum drive voltage may cause permanent damage to the mirror.





## **TYPICAL PERFORMANCE CURVES:**

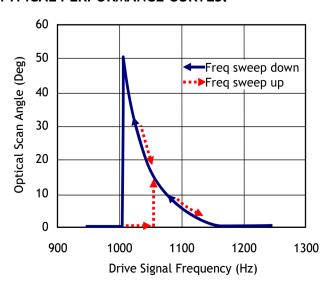



Figure 1. Typical Scan Angle vs. Drive Frequency with Constant Drive Signal Voltage

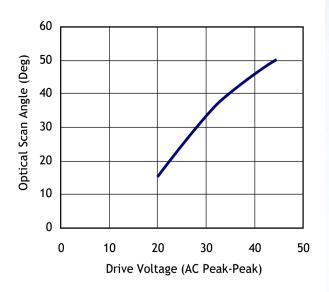



Figure 2. Typical Scan Angle vs. Drive Voltage with Constant Driving Frequency

## MIRROR SCAN TRAJECTORY VERSUS DRIVE SIGNAL:

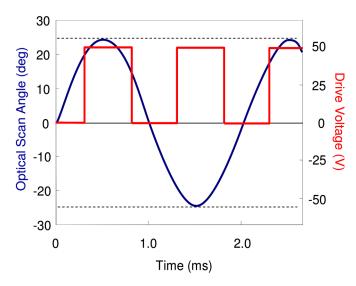



Figure 3. Typical Scan Trajectory Versus Drive Signal

#### Remarks:

- 1. Mirror scan trajectory is sinusoidal and scan frequency is half of drive signal frequency.
- 2. There is an inherent phase difference between drive signal and scan trajectory.
- 3. Mirror scanning can be started by sweeping drive signal frequency from high to desired operation
- 4. Mirror scanning can also be started by increasing duty ratio from low (5% typical) to 50% with fixed drive signal frequency.
- 5. Duty ratio exceeding 50% will not yield higher scan angle.
- 6. Stability of mirror scan is dominated by the stability of drive signal amplitude and frequency.





## PACKAGE OUTLINE & PIN ASSIGNMENT

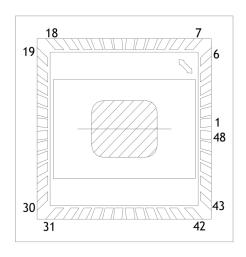



Figure 4. Package Drawing Top View

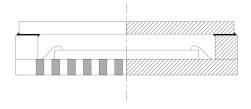



Figure 6. Package Drawing Side View

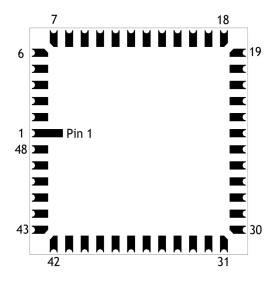



Figure 5. Package Drawing Bottom View

| PIN#           | DESCRIPTION   |
|----------------|---------------|
| Pin 8/32       | Drive Signal  |
| Pin 17         | GND           |
| Pin 40         | GND           |
| Pin 41         | GND           |
| All other pins | Not Connected |

Table 1. Pin Assignment